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Abstract— With the advances of Internet of Things (IoT)
solutions in intelligent transportation systems, collected vehicle
data can produce insights on emerging vehicular phenomenon,
and further contribute to the further improvement of innova-
tive and efficient vehicular systems. Particularly, by leveraging
data collected from vehicle sensors and maintenance models
constructed from operation and repair history, predictive main-
tenance aims to detect the anomalies of vehicles and provide
early warnings before the occurrence of failure. However, privacy
preservation still remains as one of the top concerns for vehicle
owners in predictive maintenance, as the sensory data could
potentially violate their location and identity privacy. To address
this challenge, in this article, we propose a privacy-preserving
and verifiable continuous data collection scheme with the intent
of predictive maintenance in vehicular fog, which gathers and
organizes the sensor data of each individual vehicle on a sliding
window basis. Specifically, our proposed scheme exploits the
homomorphic Paillier cryptosystem and truncated α-geometric
technique to protect the content of each individual piece of sen-
sory data. Meanwhile, our proposed scheme also aggregates and
authenticates the collected sensory data reports on a time-series
sliding window basis, which achieves the continuous observation
of the recently collected vehicular sensory data. Detailed security
analysis is carried out to demonstrate the security properties of
our proposed scheme, including confidentiality, authentication
and privacy preservation. In performance evaluations, we also
compare our proposed scheme with a traditional scheme, and our
scheme shows great improvement in terms of communication and
computation overheads. Furthermore, to show the feasibility of
our proposed scheme, we also compare and discuss the expected
squared error introduced by the differential privacy mechanism.

Index Terms— Predictive maintenance, privacy preservation,
vehicular fog-cloud.
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I. INTRODUCTION

NOWADAYS, by harnessing the power of Internet of
Things (IoT) [1]–[3] and predictive analytics in intelli-

gent transportation systems, predictive maintenance is widely
recognized for providing operational insights and warnings of
vehicles [4]–[6]. Instead of merely reflecting the current engine
status, the rich body of historical vehicular operation and
repair data can also build out the entire automotive condition
landscape and further construct a superb predictive model
with artificial intelligence, that spots emerging trends before
they turn into system failure [4], [5]. For example, a pre-
dictive maintenance model is constructed from Volvo service
records and the logged on-board data, covering parameters like
mileage, engine hours and fuel consumption, which achieves
the prediction for air compressor repair of commercial trucks
and buses [7]. By exploiting various vehicle attributes like
mileage, age, and vehicle type, a predictive maintenance
scheme is proposed in [8], which can effectively reduce the
time and labor associated with inspections and repairs of
vehicle fleets.

Nevertheless, before the wide deployment of predictive
maintenance in vehicular fog, issues like privacy preserva-
tion need to be deliberatively considered and addressed [9].
Research in [10] studies the possibility of identifying one
driver from snippets of sensory data. Experimental results
show that data streams may capture driver actions, and further
lead to the potential privacy leakage. In intelligent transporta-
tion systems, statistics collected from on-board devices and
sensors are highly location-dependent, and the sensory data
will pose serious privacy threats, especially in terms of move-
ment trajectory leakage and personal preference disclosure. To
achieve privacy preserving of data collection, various security
schemes have been broadly studied within the industrial IoT
framework. In [11], a privacy-preserving multi-dimensional
sensory data aggregation of multiple users in smart grid is
achieved with the homomorphic encryption techniques. Under
the vehicular sensing settings, privacy preserving data collec-
tion schemes are also proposed in [12], [13], which achieve
aggregated sensory data collection from a certain coverage
area during a given time period. Specifically, all of the above
schemes preserve the privacy of an individual user through
multiple users’ data aggregation, and the aggregation results
can be used to describe a phenomenon in the spatial-temporal
domain. However, the above schemes cannot be applied to
predictive maintenance in intelligent transportation systems,
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as it requires constant observation from the perspective of each
individual vehicle.

Differential privacy brings a limitation towards pri-
vacy loss, which constrains the effect brought by each
individual piece of data towards the final computation
result [14]–[16]. To achieve fault tolerant data aggrega-
tion, a lightweight privacy-preserving aggregation scheme
is proposed in [17] by combining homomorphic encryp-
tion and noise extracted from geometric distribution.
A collusion-resistant and differentially-private aggregation
scheme for star networks is proposed in [18], which exploits
the homomorphic encryption for data aggregation, under the
semi-honest participants setup. However, the above schemes
cannot be directly adopted towards the continuous query for
the time-series data processing, as they only consider the
privacy loss in the discrete query process. An expiration
mechanism taking privacy budget into consideration is pro-
posed in [19], which manages the floating car data (FCD)
records lifetime for intelligent transportation system. In addi-
tion, the authors in [20] proposed a differentially private
sliding-window count querying scheme for a data stream
management system (DSMS), which derives the statistical
information of data contained in a window. In our proposed
scheme, as the predictive maintenance process requires a
certain level of data accuracy, adding noise towards sensory
dat, especially in the context of the sequential and continuous
sensory data gathering.

To address the above-mentioned challenges, in this article,
we propose a privacy-preserving and verifiable continuous
sensory data collection scheme in vehicular fog. Specifically,
the contributions of this article are three-fold:

1) First, we devise a privacy-preserving continuous vehic-
ular sensory data generation and aggregation scheme
for the intent of predictive maintenance. Specifically,
each fog device, i.e., service and maintenance store,
treats the sensory data collected during each time slot
as a module, assembles the modules into a time-series
sliding window, and periodically uploads the aggregation
result towards the cloud owner with a predictive digital
model. As our proposed scheme involves the continu-
ous observation of correlated sliding windows, we also
exploit the truncated α-geometric mechanism to achieve
ε-differential privacy. In addition, each individual piece
of sensory data can still be recovered with the collabo-
ration of the vehicle and cloud server when necessary.

2) Second, we exploit an identity-based signature scheme
to authenticate the origins and verify the correctness
of the sliding window aggregation results with noise
injected. In our proposed scheme, even though the value
space is constraint, the content of each individual data
piece cannot be recovered from signatures by repetitively
exhausting all the possible data values.

3) Finally, detailed security analysis is conducted to
validate the security properties, i.e., confidentiality, ver-
ifiability and privacy preservation. In performance eval-
uations, we compare the performance of the proposed
scheme with a traditional scheme, which adds noise
towards the collected sensory data in each time slot. We

Fig. 1. Proposed continuous temporal data aggregation system.

compare the introduced overheads, in terms of computa-
tion complexities and communication costs, which also
corroborates the applicability of our proposed scheme.
Furthermore, we explore a utility metric to show the
feasibility of both schemes, which is denoted as the
expected squared error.

The remainder of this article is structured as following.
We introduce our system model, present our security require-
ments, and identify our design goals in Section II, and show
the preliminaries in Section III. Then we present our proposed
privacy preserving data filtering scheme under the embezzle-
ment investigation setting in Section IV. The security analysis
and performance evaluations are shown in Sections V and VI,
respectively. Related work is presented in Section VII, and we
conclude the paper in Section VIII.

II. SYSTEM MODEL, SECURITY REQUIREMENTS,
AND DESIGN GOALS

In this section, we introduce the system model, present the
security requirements, and identify the design goals.

A. System Model

In our system model, we consider a sensory data-driven
predictive maintenance framework in vehicular fog-cloud,
which potentially reduces engine downtime and provide early
warnings in intelligent transportation systems. Since predictive
maintenance emphasizes on data collected during a few recent
time intervals, we consider the sliding window based vehicle
sensor data collection and aggregation paradigm. As shown
in Fig. 1, the proposed system consists of three types of
entities: vehicles, fog nodes, and a cloud server, whose func-
tionalities are shown as follows.

• Vehicles. Each vehicle periodically collects a plethora
of vehicular sensory data indicating its current opera-
tional condition and auto parts functionality, such as
trip distance, relative distance, axle angle, oil tempera-
ture/pressure, etc. As an end node, each vehicle orga-
nizes and uploads the sensory data reports towards the
corresponding fog node, i.e., the contracted service and
maintenance store. Note that due to the dynamically
moving characteristic of vehicles, our proposed scheme
exploits the service and maintenance stores as fog nodes
to store and organize sensory data reports, instead of
exploiting base stations as fog nodes.
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• Fog Nodes. Each store plays the role of a fog com-
puting and storage node, and it is responsible for the
maintenance and repair of contracted customer vehicles.
To be more specific, it receives the vehicular sensory
data, structures the data on a sliding window basis, and
delivers the organized data towards the cloud server.
In addition, the service store is also a fog storage
device, which keeps the received sensory data at its local
storage and waits to be exploited for diagnosis when
necessary.

• Cloud Server. The cloud server owns a digital model
representing the status of auto components belonging
to a few vehicle types. The model could be built with
simulating what-if scenarios, actual field testing, and
repair observation, which helps to determine and pre-
dict the health of auto parts. By exploiting the sliding
window aggregation results of the current and historical
sensory data, the digital predictive model can predict the
occurrence of system breakdowns, and transmit warnings
towards the corresponding fog node and vehicles.

Communication Model: The connections between vehicles
and fog nodes are realized through base stations via wireless
links like 5G connection, and those between fog nodes and
the cloud server, are realized through either wired link or any
other link with high bandwidth and low transmission delay,
for instance, optical fiber cables.

B. Security Requirements

In the threat model, we first assume the cloud server is
honest-but-curious. That is, it will follow the defined protocol,
but it will try to identify the content of an individual data
report. For each fog node, it also assumes to be honest-but-
curious. Specifically, it will follow the defined protocol, but it
will also try to infer each individual data report content and
learn the aggregation result. Furthermore, we assume there is
no collusion between any two entities in our proposed scheme.
In addition, we also assume there exists an active adversary to
eavesdrop and modify data reports during data transmission.
Thus, to achieve privacy-preserving sensory data collection for
predictive maintenance, the following security requirements
must be met.

• Confidentiality. During the data transmission process,
to protect the content of each individual piece of sen-
sory data, the collected sensory data report should be
protected. Meanwhile, only the cloud server can derive
the sliding window aggregation result. In addition, during
sensory data aggregation process at fog node side, the fog
node cannot obtain the aggregated result.

• Verifiability. In the proposed scheme, as there exists an
active adversary, the correctness of the results should be
guaranteed. That is, after the sliding window aggregation
result recovery, the cloud server should authenticate the
origins and verify its correctness. Moreover, as the cloud
server may connect to multiple fog nodes, it may receive
a huge number of sensory data reports, and the proposed
scheme should support batch authentication. In addition,
when an individual data report needs to be recovered for

the maintenance purpose, the proposed scheme also be
able to authenticate each individual piece of sensory data.

• Privacy Preservation. As sensory data are highly
individual- and location-dependent, the cloud server
should not learn the content of any individual piece of
sensory data, and it should only learn each vehicle’s
sliding window aggregation result. Meanwhile, given two
adjacent sliding window aggregation results, whose inputs
are only differing in one pair of sensory data reports,
the knowledge extracted from these two reports should be
limited. In addition, as the possible value space is limited,
based on the signature of each data report, neither the fog
node nor the cloud server can infer the data report content.

C. Design Goals

Under the aforementioned system model and security
requirements, our design goal is to create a privacy-preserving
sliding window data collection scheme for predictive main-
tenance in vehicular fog. Specifically, the proposed scheme
should achieve the following design goals.

The proposed scheme should achieve the above-mentioned
security requirements. If the proposed scheme does not take
security requirements into consideration, the individual piece
of sensory data could be disclosed, which may further violate
the vehicle’s location privacy, and the correctness of data trans-
mission may not be guaranteed. Then the vehicle owners may
not be willing to get involved in the predictive maintenance
process, and the status of the vehicle may not be effectively
captured.

The proposed scheme should achieve the goal of flexibility.
Even though the proposed scheme aims to derive the sliding
window aggregation result, the content of each individual
sensory data should also be recovered when necessary. Mean-
while, at the fog node side, to accurately identify a vehicle’s
problem during vehicle diagnosis. It should also reveal an indi-
vidual sensory data towards the fog node upon the permission
of the vehicle owner.

The proposed scheme should achieve the goal of high
efficiency in terms of computational complexity and com-
munication overhead and high utility in terms of accuracy.
Although the cloud server, fog nodes, and vehicles possess
strong computational ability, the introduced computational
complexity should be deliberatively evaluated, especially when
there involve a huge number of vehicles simultaneously send-
ing sensory data reports together. Meanwhile, the proposed
scheme should also take the communication overhead into
consideration, especially the vehicle-to-fog overhead during
the data collection process. In addition, as the proposed
scheme is designed for the predictive maintenance application,
the accuracy of the scheme should also be deliberatively
evaluated.

III. PRELIMINARIES

In this section, we briefly review the security techniques
of bilinear maps, Paillier cryptosystem, ε-differential privacy
and truncated α-geometric mechanism, which serve as the
foundations of the proposed scheme.
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A. Bilinear Maps

Given a security parameter κ1, let G and GT be two cyclic
groups of the same large prime order |q| = κ1.

1) Bilinearity: Given ∀P, Q ∈ G, and ∀a, b ∈ Zq , we can
derive e(a P, bQ) = e(P, Q)ab;

2) Non-degeneracy: There exists P, Q ∈ G, which satisfies
the condition that e(P, Q) �= 1GT .

3) Computability: ∀P, Q ∈ G, there exists an efficient
algorithm to compute e(P, Q).

Definition 1: A bilinear parameter generator Gen denotes a
probabilistic algorithm that takes a parameter κ1 as input, and
generates a 5-tuple (q, G, GT , e, P) as the output, where q is
a prime number with |q| = κ1, G is an additive cyclic group
and GT is a multiplicative cyclic group, P ∈ G is a generator,
and e : G × G → GT is non-degenerated and computable
bilinear map.

B. Paillier Cryptosystem

To achieve privacy-preserving sensory data analysis, Paillier
cryptosystem is exploited for achieving the homomorphic
properties [21], which is utilized to protect the content of
each individual piece of sensory data, and to achieve the
secure aggregation of multiple data report. Specifically, Paillier
cryptosystem consists of three algorithms: key generation,
encryption and decryption.

• Key generation. Given a security parameter κ , two large
prime numbers p1 and q1 are first chosen, where |p1| =
|q1| = κ . Then the RSA modulus n = p1 ·q1 and the least
common multiple λ = lcm(p1 −1, q1 −1) are computed.
Given a function L(u) = u−1

n , after choosing a generator
g ∈ Z∗

n2 , the value μ = (L(gλ mod n2))−1 mod n
is further calculated. Finally, the public key is
pk = (n, g), and the corresponding private key is
sk = (λ, μ).

• Encryption. Given a message m ∈ Zn , choose a random
number r ∈ Z∗

n , and the ciphertext can be computed as
c = E(m) = gm · rn mod n2.

• Decryption. Given a ciphertext c ∈ Z∗
n2 , the corre-

sponding plaintext can be recovered as m = D(c) =
L(cλ mod n2) · μ mod n.

C. Differential Privacy

Differential privacy technique has received considerable
attention in privacy-preserving statistical analysis. Intuitively,
the core idea of a differential privacy mechanism is to add
reasonable noise, such that the outputs are indistinguishable
whenever an arbitrary item changes, whose core idea is
summarized as follows [20].

Definition 2: (Neighboring Datasets). Datasets DS1 and
DS2 are neighboring if they differ only at one data
item, i.e., DS1 = (di , di+1, . . . , di+w−1) and DS2 =
(di+1, di+2, . . . , di+w), where d j , j ∈ {i, i + 1, . . . , i + w}
denotes the data generated at time j .

Differential privacy ensures that an adversary cannot distin-
guish two neighboring datasets based on their query results.
Given a function f (·), a noisy mechanism A(·) for f (·)

is a probabilistic function, gives an output A(DS) with a
certain distribution relying on the true output f (DS). Note
that A(DS) may coincide with f (DS), and we exploit
Pr [A(DS) = k] to denote the probability that A(·) applied
to DS reports the answer k. Now we define how does a
mechanism A(·) achieve ε-differential privacy.

Definition 3: A privacy mechanism A(·) gives ε-differential
privacy, where ε is a non-negative real number reflecting the
level of privacy, if for any two neighboring datasets DS1 and
DS2 differing on at most one data item, and for every output
A(DS) = k, it satisfies the condition:

Pr [A(DS1) = k] ≤ eε · Pr [A(DS2) = k], (1)

in which a lower ε guarantees a stronger privacy level with
a higher perturbation noise. Meanwhile, the L1-sensitivity of
function f (·) is defined as

Definition 4: The sensitivity of a function f (·) is defined
as

� f = maxDS1,DS2|| f (DS1) − f (DS2)||1 (2)

where DS1 and DS2 are the neighboring dataset with at most
one different data item.

D. Truncated α-Geometric Mechanism

As our proposed scheme only supports integer values,
we exploit a discrete version of Laplacian noise with fixed
output range, for the noise generation. For a given func-
tion f (·) and a parameter value α ∈ (0, 1), the truncated
α-geometric mechanism Geom(α) is an oblivious mechanism
with an output range M = {0, 1, . . . , m}. When the true
function output is f (DS), the mechanism has an output
A(DS) = f (DS) + r with range M , where r is a randomly
added noise with the following distribution,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr [r = − f (DS)] = α f (DS)

1 + α

Pr [r = δ] = 1 − α

1 + α
· α|δ|,

where − f (DS) < δ < m − f (DS)

Pr [r = m − f (DS)] = αm− f (DS)

1 + α
.

(3)

Meanwhile, this mechanism can be viewed as a dis-
cretized version of a continuous mechanism which adds
random noise extracted from a Laplace distribution, where
ε = ln 1

α .

IV. PROPOSED PRIVACY-PRESERVING DATA

COLLECTION AND AGGREGATION SCHEME

In this section, we present the privacy-preserving sensory
data collection and aggregation scheme in vehicular fog, which
enables the continuous observation of data reports on a sliding
window basis. We first describe the system initialization phase,
then we show the data collection and aggregation phases,
respectively.
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A. System Initialization

We assume there exists a trusted authority (TA), i.e., auto-
motive management authority, will bootstrap the entire system.
Given a security parameter κ1, TA generates the bilinear para-
meters by running Gen(κ1), and derives a 5-tuple denoted as
{q, G, GT , e, P}. Meanwhile, TA selects two hash functions,
which are H1(·) : {0, 1}∗ → G and H2(·) : {0, 1}∗ → Z∗

q ,
respectively. In addition, TA selects a random number s ∈ Z∗

q
as a system secret key, and takes Q = s·P as the system public
key. Finally, TA publishes the system parameters paramss =
{q, G, GT , e, P, Q, H1, H2}.

Given a security parameter κ , the cloud server initializes the
Paillier cryptosystem, which the public and private key pair are
denoted as pk = (n, g) and sk = (λ, μ), respectively. Then
the cloud server selects two prime numbers α and β, such
that αu+1 < n and w · β < α, where u denotes sensory data
dimension and w is the sliding window length. Specifically,
during each time slot, each fog node organizes the u-dimension
data records collected by each vehicle during the recent w
time slots. In addition, the cloud server identifies a starting
time point T0, and defines a time slot length t , such that
the sensory data is processed on a time slot basis. Finally,
the cloud server publishes its system parameters, which is
denoted as paramsm = {(n, g), α, β, u, w, T0, t}.

During the registration of a vehicle with identity idv ,
TA generates and delivers an identity-based secret key skv =
(Pv,0, Pv,1), where Pv, j = s ·H1(idv || j) ∈ G, j ∈ {0, 1}. Then
vehicle v also selects a secret value kv and keeps it in the local
storage.

B. Sensory Data Collection

For vehicle idv , the u-dimension sensory data collected
during the i -th time slot is denoted as (di,1, di,2, . . . , di,u),
which satisfies the condition that dmin

j ≤ di, j ≤ dmax
j ,

j ∈ {1, 2, . . . , u} and dmax
j · w ≤ β. Then vehicle v performs

the following steps to generate a data report, which is

• Vehicle idv first computes the value ki, j = H2(kv ||i || j)
for each data dimension. Meanwhile, vehicle idv gen-
erates the data sequence (ei,1, ei,2, . . . , ei,u ), in which
ei, j = (di, j + ki, j ) mod β. In addition, vehicle idv

structures the derived data sequence with a prime number
α, and obtains a structured sensory data, which is

datai =
u∑

j=1

α j · ei, j . (4)

• In order to prevent the cloud server from learn-
ing the sensory data based on two consecutive slid-
ing window aggregations, the noise extracted from
the truncated α-geometric mechanism is added. Specif-
ically, vehicle idv selects a random number ri, j

from the truncated α-geometric mechanism with the
distribution Geom(ex p(− ε

�d j
)) within a given value

range {w · dmin
j , w · dmin

j + 1, . . . , w · dmax
j }, where

�d j = dmax
j − dmin

j . To recover the sliding win-
dow aggregation result, vehicle v computes a value
k ′

i, j = ∑i
o=i−w+1 −H2(kv ||o|| j) for each data dimension

j ∈ {1, 2, . . . , u}. Meanwhile, it generates another value
sequence (e′

i,1, e′
i,2, . . . , e′

i,w), in which e′
i, j = (ri, j +

k ′
i, j ) mod β. In addition, it structures the newly generated

value sequence with a prime number α, and obtains the
value ri

ri =
u∑

j=1

α j · e′
i, j . (5)

• Vehicle idv encrypts datai and ri with the cloud server’s
Paillier cryptosystem public key (n, g), and derives the
ciphertext pair{

ci = gdatai · sn
i,1 mod n2,

ĉi = gri · sn
i,2 mod n2,

(6)

where (si,1, si,2) ∈ Z∗
n are two random numbers selected

by vehicle v.
• Vehicle idv also selects two random numbers (ti,1, ti,2) ∈

Z∗
q , and generates two pairs of identity-based signa-

tures [22] with the collected sensory data sequence
(di,1, di,2, . . . , di,u) and the extracted noise sequence
(ri,1, ri,2, . . . , ri,u ), which are⎧⎪⎨⎪⎩

σi,1 = ti,1 · P,

σi,2 = ti,1 · H1(ids) + Pv,0

+ (
∑u

j=1 di, j + H2(kv ||i)) · Pv,1,

(7)

where ids is the identity of the fog node, i.e., the bound
service provider of vehicle idv , and (σi,1, σi,2) denotes
the signature of sensory data collected during the i -th
time slot.⎧⎪⎨⎪⎩

σ̂i,1 = ti,2 · P,

σ̂i,2 = ti,2 · H1(ids) + Pv,0

+ (
∑u

j=1 ri, j − ∑i
o=i−w+1 H2(kv ||o)) · Pv,1,

(8)

where (σ̂i,1, σ̂i,2) denotes the signature of the added noise
during the i -th time slot.

Finally, vehicle v formulates a sensory data report
Reporti = idv ||ci ||ĉi ||σi,1||σi,2||σ̂i,1||σ̂i,2||i , and delivers
Reporti towards the fog node ids .

C. Sliding Window Data Aggregation

During the i -th time slot, after receiving the cipher-
text pair (ci , ĉi ) from vehicle idv , the fog node ids

organizes the involved encrypted sensory data reports
(ci−w+1, ci−w+2, . . . , ci , ĉi ) for sliding window aggregation.
Then, fog node ids performs the following ciphertext aggre-
gation process, which is

Ca
i = (

i∏
o=i−w+1

co) · ĉi mod n2

= g(
∑i

o=i−w+1 datai)+ri · (
i∏

o=i−w+1

so,1 · si,2)
n mod n2.

(9)
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Fig. 2. Sensory data collection and aggregation at different time slots.

Then fog node ids sends the ciphertext Ca
i towards the

cloud server. Meanwhile, vehicle idv organizes the signa-
tures ((σi−w+1,1, σi−w+1,2), . . . , (σi,1, σi,2), (σ̂i,1, σ̂i,2)) with
the following process, which is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Si,1 = ∑i
o=i−w+1 σo,1 + σ̂i,1

= (
∑i

o=i−w+1 to,1 + ti,2) · P

Si,2 = ∑i
o=i−w+1 σo,2 + σ̂i,2

= (
∑i

o=i−w+1 to,1 + ti,2) · H2(ids) + (w + 1) · Pv,0

+ ∑u
j=1(

∑i
o=i−w+1 do, j + ri, j ) · Pv,1,

(10)

where (Si,1, Si,2) is the aggregated signature pair of time
slot i . In addition, the fog node sends the aggregated report
Ca

i ||(Si,1, Si,2) of time slot i towards the cloud server,
as shown in Fig. 2.

For the cloud server, after receiving the aggregated cipher-
text Ca

i , it performs the decryption process with its private
key (λ, μ) and further obtains the value dataa

i = ∑u
j=1 α j ·

((
∑i

o=i−w+1 do, j)+ri, j ). Then it recovers the sliding window
aggregation result for each data dimension, which is dataa

i, j =
(
∑i

o=i−w+1 do, j) + ri, j mod β, j ∈ {1, 2, . . . , u}. With each
aggregation result dataa

i, j , the cloud server authenticates the
correctness of the recovered result, which is

e(Si,2, P)
?= e(Si,1, H1(ids))

· e((w + 1) · H1(idv ||0), Q)

· e((
w∑

j=1

dataa
i, j ) · H1(idv ||1), Q). (11)

If Eq. (11) is verified to be correct, the cloud server takes
(dataa

i,1, dataa
i,2, . . . , dataa

i,u) as an input for the predictive
maintenance process.

V. SECURITY ANALYSIS

In this section, we discuss the security properties of the pro-
posed sliding window based data collection scheme. Based on
the security requirements defined in Section II-B, the security
properties are illustrated in terms of confidentiality, privacy
preservation, and verifiability, respectively.

A. The Proposed Scheme Can Achieve the Security Goal of
Confidentiality

Firstly, each individual piece of sensory data/ added noise
is encrypted with the public key of the cloud server (n, g),
such that any other entity cannot decrypt the corresponding
ciphertexts (ci , c′

i ). As the exploited Paillier cryptosystem is
proven to be semantically secure under the chosen plaintext
attack, the individual piece of sensory data can be protected
in the proposed scheme. Secondly, as the ciphertext of the
homomorphic Paillier cryptosystem supports homomorphic
addition, the fog node can derive the ciphertext of the sliding
window based on the sensory data aggregation result without
disclosing its content. Therefore, the security goal of confi-
dentiality can be achieved in the proposed scheme.

B. The Proposed Scheme Can Achieve the Security Goal of
Verifiability

Firstly, each individual piece of sensory data/ added noise
is signed with an identity-based signature scheme, and then
the signature pairs (σi,1, σi,2) and (σ̂i,1, σ̂i,2) are derived.
Meanwhile, the exploited signature scheme is verified to be
provably secure under Computational Diffie-Hellman against
adaptive chosen identities and messages [22]. Secondly,
the aggregation of the sliding window sequence signatures
((σi−w+1,1, σi−w+1,2), . . . , (σi,1, σi,2)) and the added noise
signature (σ̂i,1, σ̂i,2) can also achieve the verification of the
aggregated sliding window. In addition, since the exploited
signature scheme also supports the batch authentication of
signatures generated by different users, the proposed scheme
can also achieve batch authentication of multiple vehicles’
signatures. Thus, the security goal of verifiability can be
achieved in the proposed scheme.

C. The Proposed Scheme Can Achieve the Security Goal of
Privacy Preservation

Even though each individual piece of sensory data is
encrypted with the public key of the Paillier cryptosystem
(n, g), given the ciphertext pair (ci , c′

i ), the cloud server still
cannot recover its true value and the added noise (datai , ri )
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without learning the secret key kv of vehicle v. To derive the
sliding window sensory data aggregation result, the fog node
aggregates the sequence (ci−w+1, ci−w+2, . . . , ci ) and the
added noise ĉi of time slot i . After decrypting the aggregated
ciphertext Ca

i with its private key (λ, μ), the cloud server can
obtain the aggregated sliding window sensory data with added
noise

∑i
o=i−w+1 do + ri , and further recover the aggregated

sensory data in each data dimension
∑i

o=i−w+1 do, j + ri, j .
In the sequel, we show that the sliding window aggre-

gation value datai can achieve ε-differential privacy. Given
two continuous temporally aggregated value datai−1, j =
(
∑i−1

o=i−w do, j )+ri−1, j and datai, j = (
∑i

o=i−w+1 do, j)+ri, j ,
where ri−1, j and ri, j are two truncated α-geometric noise
terms. For any integer 0 < k < n, we can derive

η = Pr(datai−1, j = k)

Pr(datai, j = k)

= Pr(ri−1, j = k − ∑i−1
o=i−w do, j )

Pr(ri, j = k − ∑i
o=i−w+1 do, j)

= α|k−∑i−1
o=i−w do, j |−|k−∑i

o=i−w+1 do, j |. (12)

Since −|di, j − di−w, j | ≤ |k − ∑i−1
o=i−w do, j | − |k −∑i

o=i−w+1 do, j | ≤ |di, j − di−w, j | and 0 < α < 1, we can
obtain,

α�d ≤ α|di, j −di−w, j | ≤ η ≤ α−|di, j −di−w, j | ≤ α−�d ,

e−η ≤ η ≤ eη. (13)

Thus, datai, j achieves ε-differential privacy, and we demon-
strate that the differential attack at the cloud server can be
prevented.

For each signature (σi,1, σi,2), it contains the secret key
kv , such that the fog node and the cloud server cannot
recover the individual sensory data report by repetitively trying
possible values. Meanwhile, the proposed scheme still supports
the sliding window aggregation verification by combining
the involved signatures ((σi−w+1,1, σi−w+1,2), . . . , (σi,1, σi,2))
and the added noise (σ̂i,1, σ̂i,2). Therefore, the security goal of
privacy preservation can be achieved in the proposed scheme.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed scheme, in terms of complexity and utility. Meanwhile,
we compare the proposed scheme with a traditional scheme
which adds noise towards each individual data report similar
to the process shown in [23], which is briefly described in the
following:

• Let di, j denote the sensory data of dimension j collected
during the i -th time slot. Vehicle v selects a random
noise r̃i, j from the truncated α-geometric mechanism
Geom(ex p(− ε

�d j
)) within value range {dmin

j , dmin
j +

1, . . . , dmax
j }, and the noise added data is denoted as

ẽi, j = (di, j + r̃i, j + ki, j ) mod β. Then it structures ẽi, j

and derives the value d̃atai = ∑u
j=1 α j · ẽi, j .

• To recover the sliding window aggregation
result, the value k ′

i, j is also structured, namely,

k̃i = ∑u
j=1 α j · k ′

i, j . Then the ciphertexts of

(datai , d̃atai , k̃i ) can be derived as⎧⎪⎨⎪⎩
c̃i,1 = gdatai · s̃n

i,1 mod n2,

c̃i,2 = gd̃atai · s̃n
i,2 mod n2,

c̃i,3 = gk̃i · s̃n
i,3 mod n2,

(14)

where (s̃i,1, s̃i,2, s̃i,3) ∈ Z∗
n are three randomly selected

numbers. Meanwhile, ciphertext c̃i,1 is designed for the
individual sensory data recovery when necessary.

• Vehicle v also selects three random numbers
(t̃i,1, t̃i,2, t̃i,3) ∈ Z∗

q , and computes the signature
pairs:⎧⎪⎨⎪⎩

σ̃i,1 = t̃i,1 · P,

σ̃i,2 = t̃i,1 · H1(ids) + Pv,0

+ (
∑u

j=1 di, j + H2(kv ||i ||0)) · Pv,1,

(15)

where (̃σi,1, σ̃i,2) corresponds to the signature pair of
the collected sensory data, and it is introduced for the
scenario when the individual sensory data need to be
recovered.⎧⎪⎨⎪⎩

σ̃i,3 = t̃i,2 · P,

σ̃i,4 = t̃i,2 · H1(ids) + Pv,0

+ (
∑u

j=1 di, j + r̃i, j + H2(kv ||i ||1)) · Pv,1,

(16)

where (̃σi,3, σ̃i,4) corresponds to the signature pair of the
collected sensory data at i -th time slot with noise added.⎧⎪⎨⎪⎩

σ̃i,5 = t̃i,3 · P,

σ̃i,6 = t̃i,3 · H1(ids) + Pv,0

+ (− ∑i
o=i−w+1 H2(kv ||o||1)) · Pv,1.

(17)

where (̃σi,5, σ̃i,6) is utilized for the aggregated sliding
window result verification.

• For the fog node and cloud server, they perform the same
steps defined in Section IV-C for secure data aggregation,
data recovery and authentication processes, respectively.

A. Complexity Analysis

As the computational complexity of the server needs to be
involved in the maintenance of all the vehicles, the computa-
tion complexity needs to be deliberatively considered. Mean-
while, since the proposed scheme may involve the wireless
transmission in the high-mobility scenario, the communication
costs also need to be analyzed, and they are reflected through
the communication overheads.

1) Computation Cost: When a vehicle idv generates
an encrypted sensory data report Reporti =
idv ||ci ||ĉi ||σi,1||σi,2||σ̂i,1||σ̂i,2||i of time slot i , it requires 4
exponentiation operations in Zn2 to generate the ciphertext
pair (ci , ĉi ), and 6 multiplication operations in G to generate
the signature pairs (σi,1, σi,2) and (σ̂i,1, σ̂i,2). During the
data report aggregation phase, as the cost of a multiplication
operation in Zn2 is considered negligible in comparison
to the cost of an exponentiation operation, the introduced
computation cost for ciphertext aggregation is negligible.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:56:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 3. Comparison of the proposed and the traditional schemes in terms of complexity.

Meanwhile, the cost of an addition operation in G is
also considered negligible in comparison to the cost of
a multiplication operation in G. Thus, the introduced
computational cost for signature aggregation is also
considered negligible. To recover the aggregated sliding
window, the cloud server performs 1 exponentiation operation
in Zn2 for decryption, and consumes 4 pairing operations in
G for signature verification.

For the traditional scheme in comparison, it takes
6 exponentiation operations to generate the ciphertexts
(c̃i,1, c̃i,2, c̃i,3), and 9 multiplication operations in G to gen-
erate signature pairs (̃σi,1, σ̃i,2), (̃σi,3, σ̃i,4) and (̃σi,5, σ̃i,6).
Meanwhile, it takes the same steps for the data aggregation and
recovery processes, as shown in the above-mentioned analysis.

We denote the computation cost of an exponentiation oper-
ation in Zn2 as ce, a multiplication operation in G as cm , and
a pairing operation in G as cp . Therefore, the total involved
computational cost of the proposed scheme is (4 ∗ ce + 6 ∗
cm) ∗ m + (ce + 4 ∗ cb), and the computational cost of the
traditional scheme is (6 ∗ ce + 9 ∗ cm) ∗ m + (ce + 4 ∗ cb).
We conduct experiments with jPBC [24] and Paillier [25]
Libraries on a desktop with a dual core 3.2-GHz processor and
an 8-GB installed RAM. Through experiment, we identify that
a single exponentiation operation in Zn2 costs ce = 3.7 ms,
a single multiplication operation in G takes cm = 7.95 ms, and
a pairing operation in G costs cp = 4.59 ms. Fig. 3(a) shows
the involved computation cost with respective to the increase
of the number of vehicles, when it ranges between 1 to 10.
Simulation result shows that our proposed scheme reduces the
computation costs in comparison with a traditional scheme.

2) Communication Cost: The proposed scheme has
two communication phases: vehicle-to-fog communication
and fog-to-cloud communication. For the former phase,
the involved communication overhead is (2048 ∗ 2 +
160 ∗ 4 + 32) ∗ m bits, if we set |idv | + |i | to
be 32 bits, and the fog-to-cloud server overhead is
2048 + 160 ∗ 2 bits. While the vehicle-to-fog communication

overhead is (2048 ∗ 3 + 160 ∗ 6 + 32) ∗ m bits, and the
fog-to-cloud overhead is 2048 + 160 ∗ 2 bits. Fig. 3(b) also
shows the involved communication overheads with respective
to the increase of the number of vehicles, when it ranges
between 1 to 10. Simulation result shows that our proposed
scheme reduces the communication costs in comparison to the
traditional scheme.

B. Utility Analysis

Since the proposed scheme introduces the noise extracted
from the truncated α-geometric mechanism into the aggrega-
tion result, we exploit the expected squared error to measure
the difference between the noise-added and actual data. In
order to investigate the influence of the noise mechanism,
we evaluate the proposed scheme and compare it with a
traditional scheme under different security level ε and the
sliding window length.

Specifically, we take one sensory data dimension as an
example, the sum of one sensory data dimension is denoted as
f (d) = ∑w

i=1 di , whose value resides within {w ·dmin, . . . , w ·
dmax} and the added noise is represented as r0. Then the
expected squared error of the proposed scheme E SE1 can be
denoted as

E SE1 = E(r2
0 ) =

∑w·dmax
f (d)=w·dmin

E( f (d)2)

w · dmax − w · dmin + 1

where E( f (d)2) = α|w·dmin− f (d)|

1 + α
· (w · dmin − f (d))2

+
w·dmax− f (d)−1∑

δ=w·dmin− f (d)+1

1 − α

1 + α
α|δ| · δ2

+ α|w·dmax − f (d)|

1 + α
· (w · dmax − f (d))2.

(18)

We compare the proposed schemed with a traditional
scheme, in which the sensory data value collected during
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Fig. 4. Expected squared error comparison of the proposed and traditional schemes.

time slot i is g(d) = di , and each vehicle selects a random
noise ri from the truncated α-geometric noise within the range
{dmin, . . . , dmax}. Since the proposed scheme considers the
sliding window aggregation and any two adjacent aggregation
results only differ in one sensory data item, each added
geometric random noise needs to follow the ε-differential
privacy. Thus, the expected squared error of the traditional
scheme E SE2 is

E SE2 = E((

w∑
i=1

ei )
2) = w · E(r2

i ) + (w2 − w) · (E(ri ))
2,

(19)

where ei denotes the error introduced by window i , and E(ri )
is derived as

E(ri ) =
∑n2

g(d)=n1
E(g(d))

dmax − dmin + 1

=
n2∑

g(d)=n1

1

dmax − dmin + 1
(
α|d̂min |

1 + α
· d̂min

+
d̂max−1∑

δ=d̂min+1

1 − α

1 + α
α|δ| · δ + αd̂max

1 + α
· d̂max), (20)

where d̂min = dmin − g(d) and d̂max = dmax − g(d). Then
E(r2

i ) can be derived as

E(r2
i ) =

∑dmax
g(d)=dmin

E(g(d)2)

dmax − dmin + 1

=
dmax∑

g(d)=dmin

1

dmax − dmin + 1
(
α|d̂min |

1 + α
· d̂2

min

+
d̂max −1∑

δ=d̂min+1

1 − α

1 + α
α|δ| · δ2 + αd̂max

1 + α
· d̂2

max). (21)

Fig. 4(a) and Fig. 4(b) compare the expected squared error
of proposed scheme and the traditional scheme, with respective
to the increase of sliding window length (whose value ranges
between 2 to 50), when the privacy level ε is set to be 0.05 and
0.1 respectively. Note that the proposed scheme also supports
the aggregated sensory data sampling, and we should evaluate
the expected squared error under different sliding window
length. As shown in Fig. 4(a), the expected squared error of the
proposed scheme outperforms that of the traditional scheme,
when ε is set to be 0.05 and the sliding window length is set
between 11 and 40. While as shown in Fig. 4(b), the expected
squared error of the proposed scheme outperforms that of the
traditional scheme, when ε is set to be 0.1 and the sliding
window length is set between 5 and 21.

Based on the above complexity analysis in
Subsection VI-A and utility analysis in Subsection VI-B,
in comparison with the traditional scheme, the proposed
scheme reduces the introduced computation and
communication costs. While the main limitation of the
proposed scheme is the higher expected squared error under
certain circumstances, in comparison with the traditional
scheme.

VII. RELATED WORK

In this section, we briefly review some works, which are
closely related to our work.

A. Privacy-Preserving Data Aggregation

In [11], a privacy-preserving multi-dimensional data aggre-
gation scheme for smart grid was proposed, which utilized
the homomorphic Paillier cryptosystem. The proposed scheme
enabled the derivation of the aggregated sensory data result
of multiple residential user reports, while protecting each
individual data report. In [26], an efficient privacy-preserving
electricity demand aggregation and response scheme was
proposed, by exploiting the homomorphic encryption and
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adaptive key evolution techniques. In addition to achieving the
aggregation of demands generated by multiple users (such that
each individual demand is protected), the proposed scheme
also realized the forward session key secrecy and secret key
evolutions. In [12], a privacy-preserving location-based data
collection and matching scheme was proposed in vehicular
ad hoc network, in which the individual vehicular sensory
data is denoted in the level of predefined location grid.
With the proposed scheme, the individual vehicular sensory
data matching result could be obtained, and the individual
sensory data report can be protected through data aggregation.
A privacy-preserving data collection and querying scheme was
proposed in [13], which supports vehicular sensory data collec-
tion and moving trajectory representation at the network edge.
Through vehicular sensory data aggregation at the network
edge, the individual sensory data report could be protected.

The above schemes protect the content of each individual
piece of sensory data by aggregating the reports generated by
multiple users. However, they are not adaptive to the situation,
in which the behavior of each individual user needs to be
captured.

B. Differential Privacy in Data Aggregation

To protect the content of each individual piece of sensory
data, differential privacy technique was widely utilized for the
statistical disclosure control, i.e., assuring each individual user
that his/her privacy would not be compromised under certain
circumstances.

In [17], a lightweight privacy-preserving data aggregation
scheme for fog computing-enhanced IoT was proposed with
the homomorphic encryption technique. To achieve the privacy
preservation of one IoT device in terms of failure, the proposed
scheme adds noise chosen from geometric distribution, such
that differential privacy can be achieved in the proposed
scheme. In [27], an efficient and privacy-preserving aggre-
gation model with aggregator obliviousness was proposed in
smart grid. To achieve differential privacy, it exploits the
Gaussian mechanism, and takes both privacy loss mitiga-
tion and utility maintenance into consideration. By utiliz-
ing the Shamir secret sharing and homomorphic encryption
techniques, a differentially private aggregation scheme was
proposed for star networks in [18]. This scheme also took
collusion into consideration, and guaranteed the correctness
of the noise included in the final aggregation result. However,
the above schemes are still based on the data aggregation
generated by multiple users, and do not take data aggregation
in the temporal domain into consideration.

A differential privacy scheme under continual observation
was investigated in [28], which was realized through main-
taining an accumulative privacy counter. In [20], the authors
investigated the scenario when releasing the sliding window
data stream aggregation results with differential privacy in the
data stream management server. However, the above schemes
do not take the distributive data collection architecture into
consideration, and they cannot be applied for the decentralized
vehicular sensory data collection scenario which makes a
brief description of the vehicle’s current status. Therefore,

a privacy-preserving vehicular sensory sliding window data
aggregation scheme with differential privacy is needed.

VIII. CONCLUSION

In this article, we have proposed a privacy-preserving slid-
ing window based vehicular sensory data collection scheme
for predictive maintenance in vehicular fog, which exploits
the homomorphic Paillier cryptosystem and the ε-differential
privacy for the protection of each individual vehicular sen-
sory report. Meanwhile, the proposed scheme achieves the
sliding window based aggregation and the correctness veri-
fication of the derived aggregation result. Security analysis
has demonstrated that our proposed scheme can achieve the
predefined security goals, i.e., confidentiality, authentication
and privacy preservation. Simulation results have shown that
the proposed scheme can reduce the involved communication
and computation overheads in comparison to a traditional
scheme. For the future work, we will study how to mitigate
the performance degradation introduced by the added noise,
and further improves the system utility and query accuracy.
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